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Background 
Target applications: 
•  High-speed propulsion and reacting flows 
•  Hypersonic reentry aerothermodynamics 
•  Astrophysics 
 
Challenges: 
•  Multi-scale characteristics (turbulence, flame) 
•  Shock-capturing  
•  Real-world geometry 
•  Physical realizability (solver robustness) 
•  Stiff chemical source term 
•  Complex gas models 

Objective:  
•  Development of a flow solver capable of handling these 

challenges  

Hypersonic reentry 

Detonation engine 

    Supernova explosion 

Figure credits: DOE/NASA 
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Discontinuous Galerkin discretization scheme 
•  Basis/test functions: 

•  Solution approximation: 

•  Strengths of DG scheme: 
1. High-order accuracy 
2. Compactness 
3. Energy stability 
4. Adaptation 
5. High-order geometry representation 

DGP1/p=1 with legendre polynomial in 2D 

Vp
h = {� 2 L2(⌦) : �e ⌘ �|⌦e 2 Pp, 8⌦e 2 ⌦}

Ue(t, x) =

NpX

i=1

e
Ue,i(t)�e,i(x), x 2 ⌦e
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Nonlinear instability of DG scheme 
density pressure entropy 
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Entropy-bounded DG 
scheme (EBDG) 



Flow models 

Compressible Navier-Stokes equations: 
 
 
 
 
 
 
 
Law of entropy:  
•  Entropy residual        is true for any convex 

function     with respect to     . 
•  Common choice of      :   

•  Discrete minimum entropy principle (Tadmor, 1986)  

R = @tU +r · F  0
U U

s(U(xi, t+�t)) � min
i�1ji+1

s(U(xj , t))

U
U = �⇢s s = log(p⇢��

)
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Functioning mechanism of EBDG scheme 

Entropy stable 
flux (Riemann 

solver) 

Entropy 
boundedness of 
quadrature-point 

solutions  

s(Ue(t+�t)) � s0

Sufficient condition 

[1] Lv & Ihme, JCP, 2015. 
[2] Zhang & Shu, JCP, 2010-2011. 

Ue !L Ue

L
Ue(xq) � s0
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Functioning mechanism of EBDG scheme 
•  Solution constraining implemented using a scaling operator: 
Find  
 
such that 
 
where     is the minimum entropy,      denotes quadrature points. 
 
•  s is nonlinear function, but the problem can be solved using algebra 

relations: 

•  Find     by setting  

s(LUe(xq)) � s0

LUe = Ue + "(Ue � Ue)

s0 xq

p(LUe)

⇢�(LUe)
� exp(s0)

p(LUe) � (1� ")p(Ue) + "p(Ue)

(1� ")⇢�(Ue) + "⇢�(Ue) � ⇢�(LUe)

(1)

(2)

(1) � (2)⇥ exp(s0)

"

# Zhang & Shu, JCP, 2010-2011. 

#
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Functioning mechanism of EBDG scheme 

Entropy stable 
flux (Riemann 

solver) 

Entropy 
boundedness of 
quadrature-point 

solutions  

s(Ue(t+�t)) � s0

Sufficient condition 

[1] Lv & Ihme, JCP, 2015. 
[2] Zhang & Shu, JCP, 2010-2011. 

Ue !L Ue

L
Ue(xq) � s0
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s(LUe)

Elimination of failure modes using EBDG 
Demonstration of solution constraining     with a Mach-20 moving shock Ue !L Ue

s(Ue)

s(Ue)

density pressure entropy 
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Elimination of failure modes using EBDG	

“vanilla” version DG Entropy-bounded DG Entropy-bounded DG 

12 



Overview of shock-capturing methods for DG  

Shock-
localization	

Shock-capturing	

Solution-
stabilization	

•  Minmod functions 
(Cockburn & Shu, 1989) 

•  Local moments (Biswas et 
al., 1994; Burbeau et al., 
2001) 

•  Inter-element solution jump 
(Krivodonova, 2004) 

•  Local modal decomposition 
(Persson & Peraire, 2006) 

•  Limiter (TVB, WENO, Moments 
…) (Cockburn & Shu, 1989; 
Biswas et al., 1994; Krivodonova, 
2007 Luo, 2007; …)  

•  Artificial viscosity (Persson & 
Peraire, 2006; Barter & Darmofal, 
2010, …) 

•  Filtering (Sheshadri & Jameson; 
Lopez-Morales & Jameson, 2015; 
2016) 

•  Posterior solution updating 
(Dumbser, 2016) 
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Entropy-residual 
 shock detector 



Entropy residual 
•  Physical definition: 

•  Interpretation:  (1)      : smooth solution 
      (2)        : discontinuous solution 

 
§  Discrete entropy residual: 

§  Convergence property of entropy-residual for smooth solution* 

§  Related studies: entropy-residual in the context of FEM and Fourier 
       approximation (Guermond & Pasquetti, 2008;  
       Guermond et al., 2011) 

R = @tU +r · F

R = 0
R < 0

RU (Ue) =
1

|⌦e|

Z

⌦e


U(Ue(t+�t))� U(Ue(t))

�t
+

1

2
r · (F(Ue(t)) + F(Ue(t+�t))

�
d⌦

* Lv & Ihme, JCP, 2016. 

|RU (Ue)|  bhr, r = min

⇢
p� dim

2
, 1

�
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Numerical test and demonstration 
Shu-Osher problem: Mach3 shock interacts with a sinusoidal density wave 
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Shu-Osher problem: Mach3 shock interacts with a sinusoidal density wave 
 

Numerical test and demonstration 
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Threshold setting for  
•  Troubled-cell detection criterion:  
 
 
•  How to set    ?  
For smooth solutions, no effect when h is sufficiently small.  
 
•  Local and dynamic estimate for  

|RU (Ue)|

|RU (Ue)| > "

"

"

| eRU | ⇠
1

|⌦e|

Z

⌦e

@(⇢us)

@x1
dx ,

⇠ 1

he
(⇢̄⇤ū⇤

s̄

⇤ � ⇢̄ūs̄) ,

⇠ s̄

he
(⇢̄⇤ū⇤ � ⇢̄ū) ,

⇠ s̄⇢̄vs

he

✓
⇢̄

⇤

⇢̄

� 1

◆
,

⇠ 1

he

✓
|ū|+ c̄

r
� � 1

2�
+

� + 1

2�

p̄

⇤

p̄

◆ 2
��1

⇣
p̄⇤

p̄ � 1
⌘
s̄⇢̄

�+1
��1 + p̄⇤

p̄

.

Assume that entropy flux mostly varies along x1 

Approximate sub-cell using neighbors’ information 

Entropy variation is a third-order term 

Introduce vs as shock velocity 
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Effect of threshold setting on detector performance 
Example: Shock-vortex interaction (Ma = 1.1)* 

* Jiang & Shu, JCP, 1996. 

(a) t = 0.20, constant threshold " = 1 (b) t = 0.40, constant threshold " = 1 (c) t = 0.60, constant threshold " = 1

(d) t = 0.20, DTS (e) t = 0.40, DTS (f) t = 0.60, DTS

Figure 9: EBDGP4 solution of shock-vortex interaction (color contours: pressure with 41 levels between 0.84 and 1.44; black
regions in background represent troubled cells.

troubled cells are primarily identified around the incident shock, the Mach shock and the transverse shock,
which are connected through the triple point, and the elongated bow-shock. A zoom of the density profile
around the triple point is also given in figures (c, f, i). It can be observed that the high-order approximation
improves the resolution in predicting the Kelvin-Helmholtz instabilities along the slip-line and wall-jet.
We also note that some small oscillations are not fully removed in this case, which might be due to the
simplified AV specification on triangular elements. To substantiate this point, we also solve this problem
on a regular mesh with rectangular elements with sizes h = 1/100 and h = 1/200. The density profiles
and trouble-cell distributions are shown in Fig. 11, from which we can see that the shock detector performs
equally well. As shown in Fig. 12, sharp wave fronts and fine hydrodynamic structures are nicely captured
around the triple point. In addition to that, the small oscillations that are shown in figures (c, f, i) do not
appear on rectangular elements. This observation indicates that for triangular elements more sophisticated
AV-specification at the sub-cell might be required, and this issue is subject of further investigation.

9. Conclusions

An entropy-residual approach was proposed for shock detection with application to DG and high-order
schemes. The entropy residual was introduced in a fully discretized setting and was numerical analyzed. It
was shown that for smooth solutions, the detection function converges to zero. This property guarantees the
deactivation of imposing shock stabilization for smooth solutions, after the required resolution is achieved
such that the entropy residual stays below a given threshold. In spite of the e↵ectiveness of the entropy
residual in numerically determining under-resolved flow features, the robust application also relies on a

18
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Krivodonova, et al. Appl. Numel. Math., 2004. 
Persson P.-O. and  Peraire J., 2006.  

Simulation setting:  
1)  EBDGP4 
2)  h = 1/200 
3)  Entropy-residual 

shock indicator 
4)  Artificial viscosity 

Numerical test – Shu-Osher problem 
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Artificial-viscosity 
method for unsteady & 

explicit calculations 
 
 

H O W  M U C H  A V  S H O U L D  B E  
I N T R O D U C E D ?  



Determination of AV magnitude by Fourier Analysis 
•  Equation: 

•  Assumption:        is locally added to only one cell of the domain 

•  Eigen-spectrum: 

@
t

U = �a@
x

U + µ0@xxU

µ0

*  Only advection 
o With viscosity 

R(�)min

Settings: DGP2, BR2 scheme, 20 elements, µ0 = 0.1 
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Eigenvalue magnitude scaling 
•  Approximate the behavior of  

R(�)min ⇡ R(�AV )min +R(�adv)min

R(�)min
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Determination of AV magnitude 
Impose a constraint on                    for efficient time-stepping 
 
 
 
The range of     should be in (1, 2) 
•             means that no AV is added 
•              means that diffusion mode become dominating locally 
 
The suggested values for  
•  for nonlinear problems 
•  for linear problems  

AV is determined as 
 
where the scaling is consistent to the Persson’s formula.*   

R(�)min

�

� = 1.5
� = 1.15

µ0 = (� � 1)
C1(p)

C2(p)
ah

*Persson P.-O. and  Peraire J., 2006. 

� = 1
� = 2

|R(�)min| ⇡ |R(�AV )min|+ |R(�adv)min|  �|R(�adv)min|
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Numerical test – Sod shock-tube problem 
Refinement study: 

x

0 0.2 0.4 0.6 0.8 1

ρ

0

0.2

0.4

0.6

0.8

1

1.2

0.92 0.94 0.96
0.1

0.15

0.2

0.25

0.3

 0.7 0.76
0.25

0.3

0.35

0.4

0.45

x

0 0.2 0.4 0.6 0.8 1

ρ

0

0.2

0.4

0.6

0.8

1

1.2

0.92 0.94 0.96
0.1

0.15

0.2

0.25

0.3

 0.7 0.76
0.25

0.3

0.35

0.4

0.45

EBDGP4 EBDGP3 

x
0 0.2 0.4 0.6 0.8 1

ρ

0

0.2

0.4

0.6

0.8

1

1.2

h = 1/50
h = 1/100
h = 1/200
“Exact”

0.92 0.94 0.96
0.1

0.15

0.2

0.25

0.3

(a) Grid refinement study for EBDGP2

x

0 0.2 0.4 0.6 0.8 1

ρ

0

0.2

0.4

0.6

0.8

1

1.2

0.92 0.94 0.96
0.1

0.15

0.2

0.25

0.3

(b) Grid refinement study for EBDGP3

x

0 0.2 0.4 0.6 0.8 1
ρ

0

0.2

0.4

0.6

0.8

1

1.2

0.92 0.94 0.96
0.1

0.15

0.2

0.25

0.3

(c) Grid refinement study for EBDGP4

x

0 0.2 0.4 0.6 0.8 1

ρ

0

0.2

0.4

0.6

0.8

1

1.2
t = 0.06

t = 0.12

t = 0.18

t = 0.24

(d) AV performance (EBDGP4 and h = 1/100)

Figure 2: Simulation results of the Sod shock tube (Symbols in (d) indicate where artificial viscosity is applied).

8.3. Shu-Osher problem

This test aims at examining the performance of the shock-capturing scheme in the presence of high-
frequency density waves. The setup was originally proposed by Shu and Osher [25]. The initial conditions
are defined as:

(⇢, u, p)T =

(
(3.8571, 2.6294, 10.3333)T for x  0.125 ,

(1.0 + 0.2 sin(50x), 0.0, 1.0)T for x > 0.125 ,
(34)
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Numerical test – Shu-Osher problem 
Refinement study: 
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Figure 2: Simulation results of the Sod shock tube (Symbols in (d) indicate where artificial viscosity is applied).

8.3. Shu-Osher problem

This test aims at examining the performance of the shock-capturing scheme in the presence of high-
frequency density waves. The setup was originally proposed by Shu and Osher [25]. The initial conditions
are defined as:

(⇢, u, p)T =

(
(3.8571, 2.6294, 10.3333)T for x  0.125 ,

(1.0 + 0.2 sin(50x), 0.0, 1.0)T for x > 0.125 ,
(34)
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Numerical test – double Mach reflection	
Double Mach reflections:  Mach 10 shock impinges on a wall with 60o	

Simulation setting:  
1)  EBDGP4 
2)  h = 1/200 
3)  Entropy-residual 

shock indicator 
4)  Artificial viscosity 
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Numerical test – double Mach reflection 

DGP2 DGP3 DGP4 

 
Predictions 
by EBDG 

EBDG  
+  

entropy-
residual 
detector  

+  
artificial 
viscosity 
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Operating condition and parameters 

•  mixture composition 
•  pressure: 26.7 kPa 
•  temperature: 293 K  
•  thermochemical model: 11 species / 19 elementary reactions* 
•  h = 1/200 reactive zone length / EBDG / shock-capturing capability 

1 
cm Decoupled

Shock Wave

Decoupled
Deflagration Front

Expanded
Detonation

Coupled
Detonation Front

(Initiator Section) (Combustor Section)

x
y

4.2 cm 10 cm

2 
cm

1.8 cm

2H2 +O2 + �Ar + (4� �)N2

*Burke et al. Int. J. Chem. Kinet., 2012. 

Application: Detonation diffraction and re-initiation 
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Detonation diffraction and re-initiation 
Detonation dynamics before shock-wall interaction 

Numerical Schlieren image (density gradients) 

shock 

flame 

30 



Detonation diffraction and re-initiation 
Comparison of simulation to measurement* 

*Ohyagi, et al., Shock Waves, 2002. 
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Re-initiation through shock-wall interactions 
Dynamics of shock-wall interaction (case with      /β = 0) 
 

2H2 +O2 + 4N2

10 20 30 40 50 60
2.5
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Sho ck Ang l e α [ deg ]

T
3
/
T

0

 

 

β=4

β=2

β=1.5

β=0

MRRRRegular reflection Mach 
reflection 
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Re-initiation through shock-wall interactions 
Modeled mixture and one-step simplified chemistry 
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Artificial-viscosity 
method for steady-

flow predictions 



Target flow configuration 
Quantity of interest: surface heating rate of hypersonic blunt body 

Isothermal
Wall 

Inflow (Dirichlet 
boundary 

conditions) 

Outflow (extrapolation 
boundary conditions) 

Ma1 = 17.6

Twall

T1
= 2.5

ReD = 750, 000
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Comparison to studies using FV schemes 
•  FV schemes exhibit strong sensitivity to 

flux-formulation, limiter and choice of 
reconstruction approaches. 

•  FV schemes show stronger sensitivity to 
mesh topologies. 

Randomly oriented tetrahedra1 

[1] Candler et al., 2009; 
[2] Kitamura et al., 2010; 
[3] Nompelis et al., 2004. 
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Design of AV formulation 
•  Requirements: (1) stability; (2) zero-residual solutions; (3) accuracy 
 
•  Parameterization of AV fields: 
 
 
 
 
 
 
 
 
 
 
•  Observations: 

 Insufficient AV  à violation of (1) and (2) 
 Excessive AV   à violation of (3) 

AV layer thickness 

AV magnitude 
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Generation of AV field 
STEP I: assign a piecewise constant AV field 
 
 
 
STEP II: smoothen the AV field using a differential filter 
 
 
 
 
Critical parameters:  

        
    determines AV magnitude 
   
    determines AV-layer thickness 

µ

0
AV = C

h(x)

p

f(Se)

µ0
AV = µAV � h2r2µ0

AV

C

h
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The optimal AV field 
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Generation of AV field using an optimization process 
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magnitude is 10 times smaller 



Comparison with reference data 
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Dependence on discretization of inviscid/viscous fluxes 
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Dependence on mesh topologies 
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Conclusions and Outlook 
•  Entropy-bounded DG scheme is developed to support the studies of 

shock-containing flow problems in a variety of configurations. 
•  Convergence of entropy residual is analyzed in the context of DG 

scheme; entropy-residual shock detector is developed to exactly 
localize shock fronts and facilitate the application of artificial-viscosity. 

•  AV formulation for explicit time-integration is developed, which shows 
good performance in canonical test cases and applications to 
detonation problems. 

•  AV formulation for implicit steady flow problems is developed and 
shows good performance in the prediction of hypersonic surface 
heating.  

 
 
In future, the developed shock-capturing capability for high-order DG 
scheme will be applied to flows involving more complex physics, such as 
hypersonic flows with radiation and ionization.  
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Thank you!	
Q U E S T I O N ? 	


